Reg No.:_____ Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: EC202

Course Name: SIGNALS & SYSTEMS

Max. Marks: 100 **Duration: 3 Hours**

PART A

Answer any two questions, each carries 15 marks

Marks

- Determine whether the signal $x[n] = 1 + \sin\left(\frac{5\pi n}{3} + \frac{\pi}{2}\right)$ is periodic. Find the a) (2) fundamental period if it is periodic.
 - b) For the signal f(t) shown below:

(7)

- i) Sketch *f*(*3-2t*)
- ii) Find the energy of the signal f(t).

Check whether the following systems are linear and stable. c)

(6)

- (i) $v(t) = e^{x(t)}$
- (ii) y[n] = x[n-1]
- Let f(t) = 2(u(t) u(t-2)) and $g(t) = e^{t}(u(t) u(t-2))$ 2 a)
- (2)
- (i) Sketch the functions f(t) and g(t)(ii) Compute f(t)*g(t). Here * denotes convolution.

(7)

- Define the cross correlation function $\Phi_{xy}(\tau)$ for two signals x(t) and y(t). What b) (2) is its connection with convolution?
- Consider an LTI system with impulse response h[n] = u[n]. Determine the **(4)** c) stability and causality of this system.
- Find the convolution of a signal $x[n] = \{1, -1, 1, -1\}$ with itself. 3 a)

(6)

- Check whether the system described by the input output relationship $y[n] = x^2[n]$ b) (3) is time invariant.
- Determine the power and energy of the following signals. Classify them as c) (6) energy/power signals.
 - (i) $\mathbf{x}(t) = A \sin(\Omega t)$
 - (ii) $\mathbf{x}[\mathbf{n}] = \mathbf{u}[\mathbf{n}]$

PART B

Answer any two questions, each carries 15 marks

4 a) Determine the exponential Fourier series representation of half wave rectified (10) sine wave as shown in the figure below.

- b) State and prove the Parseval's theorem for continuous time Fourier transforms. (5)
- 5 a) Let f(t) be a signal with the spectrum as shown below.

- (i) What is the Nyquist frequency (in Hz) of the signal f(t)? (6)
- (ii) Suppose the signal is sampled by an impulse train $\delta_{Fs}(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT)$ where T is the sampling period and Fs is the sampling frequency. Sketch the spectrum of the sampled signals with (A) Fs = 200 Hz and (B) Fs=400 Hz. (1)
- (iii)Specify whether the original signal can be recovered from samples in each case (Fs=200 Hz and Fs=400 Hz).
- b) An LTI system has h(t) such that $\mathcal{L}\{h(t)\} = H(s) = \frac{1}{s+1}$, $Re\{s\} > -1$. Determine (6) the system output y(t) if the input is $x(t) = (e^{-t/2} + 2e^{-t/3}) u(t)$.
- 6 a) Find the Laplace transform and ROC of the following signals. (9)
 - (i) $e^{-a|\mathbf{t}|}, a > 0$
 - (ii) $\sin(\omega_0 t + b)e^{-at}u(t)$ a, b real numbers
 - b) Let $F(\omega) = \mathcal{F}\{f(t)\}$. Determine the Fourier transform of g(t) = f(at b)in (6) terms of $F(\omega)$ where $\alpha \neq 0$, a, b real. Handle the cases for a > 0 and a < 0 separately.

PART C

Answer any two questions, each carries 20 marks

(5)

- 7 a) Find the Z transform and ROC of the following signals.
 - (i) $x[n] = 2^n u[n]$
 - (ii) $\delta[n]$
 - b) Pole zero plot for Z transform X(z) of a discrete time signal x[n] shown below. (6)

Determine the ROC in each of the following cases.

- (i) x[n] is right sided
- (ii) Fourier transform of x[n] converges
- (iii)x[n] is left sided
- c) Determine the DTFS coefficients for the discrete time signal $x[n]=\cos(\frac{2\pi n}{3})+\sin(\frac{2\pi n}{7})$ (9)

Also plot the magnitude and phase spectra.

8 a) Consider a LTI system characterised by input output relationship

$$y[n] - \frac{1}{4}y[n-1] = x[n] + \frac{1}{6}x[n-1]$$
(2)

- (i) Compute the system function H(z). (2)
- (ii) Sketch the possible ROCs for H(z).
- (iii)Compute the impulse response h[n] if it is known that impulse response is left sided. (4)
- b) Consider a system with impulse response $h[n] = (0.5)^n u[n]$.
 - (i) Determine the system function $H(e^{j\omega})$ (4)
 - (ii) If the input $x[n] = \cos(\frac{n\pi}{2})$, determine the output y[n]. (8)
- 9 a) List any four properties of Z-transform, state and prove the convolution property (10) of Z transforms.
 - C) A signal x(n) has DTFT $X(e^{j\omega}) = \frac{1}{1-ae^{-j\omega}} |a| < 1$. Determine the DTFT of $x[n+2] e^{j\frac{\pi}{2}n}$.
 - d) Determine the DTFT of the signal x[n]=u[n]-u[n-N] (6)